Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome
نویسندگان
چکیده
The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.
منابع مشابه
Descending Control of Electroreception. I. Properties Praeeminentialis Neurons Projecting Indirectly to the Electrosensory Lateral Line Lobe
The first-order CNS processing region within the electrosensory system, the electrosensory lateral line lobe, receives massive descending inputs from the nucleus praeeminentialis as well as the primary afferent projection. The n. praeeminentialis receives its input from the electrosensory lateral line lobe as well as from higher centers; hence this nucleus occupies an important position in a fe...
متن کاملInformation-processing demands in electrosensory and mechanosensory lateral line systems.
The electrosensory and mechanosensory lateral line systems of fish exhibit many common features in their structural and functional organization, both at the sensory periphery as well as in central processing pathways. These two sensory systems also appear to play similar roles in many behavioral tasks such as prey capture, orientation with respect to external environmental cues, navigation in l...
متن کاملDescending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe.
The nucleus praeeminentialis projects to the electrosensory lateral line lobe via 2 distinct pathways. Neurons that project to the posterior eminentia granularis and therefore influence the electrosensory lateral line lobe indirectly are described in the preceding report. This report describes the physiological properties and anatomical characteristics, revealed with Lucifer yellow staining, of...
متن کاملElectrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes.
Ampullary organ electroreceptors excited by weak cathodal electric fields are used for hunting by both cartilaginous and non-teleost bony fishes. Despite similarities of neurophysiology and innervation, their embryonic origins remain controversial: bony fish ampullary organs are derived from lateral line placodes, whereas a neural crest origin has been proposed for cartilaginous fish electrorec...
متن کاملComparative anatomy of the electrosensory lateral line lobe of mormyrids: the mystery of the missing map in the genus Stomatorhinus (family: Mormyridae).
Fish in the family Mormyridae produce weak electric organ discharges that are used in orientation and communication. The peripheral and central anatomy of the electrosensory system has been well studied in the species Gnathonemus petersii, but comparative studies in other species are scarce. Here we report on one genus of mormyrid that displays a remarkable change in the electrosensory lateral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017